Add like
Add dislike
Add to saved papers

Multi-label in vivo STED microscopy by parallelized switching of reversibly switchable fluorescent proteins.

Cell Reports 2021 June 2
Despite the tremendous success of super-resolution microscopy, multi-color in vivo applications are still rare. Here we present live-cell multi-label STED microscopy in vivo and in vitro by combining spectrally separated excitation and detection with temporal sequential imaging of reversibly switchable fluorescent proteins (RSFPs). Triple-label STED microscopy resolves pre- and postsynaptic nano-organizations in vivo in mouse visual cortex employing EGFP, Citrine, and the RSFP rsEGP2. Combining the positive and negative switching RSFPs Padron and Dronpa-M159T enables dual-label STED microscopy. All labels are recorded quasi-simultaneously by parallelized on- and off-switching of the RSFPs within the fast-scanning axis. Depletion is performed by a single STED beam so that all channels automatically co-align. Such an addition of a second or third marker merely requires a switching laser, minimizing setup complexity. Our technique enhances in vivo STED microscopy, making it a powerful tool for studying multiple synaptic nano-organizations or the tripartite synapse in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app