Add like
Add dislike
Add to saved papers

Potent Cyclic Peptide Inhibitors of FXIIa Discovered by mRNA Display with Genetic Code Reprogramming.

The contact system comprises a series of serine proteases that mediate procoagulant and proinflammatory activities via the intrinsic pathway of coagulation and the kallikrein-kinin system, respectively. Inhibition of Factor XIIa (FXIIa), an initiator of the contact system, has been demonstrated to lead to thrombo-protection and anti-inflammatory effects in animal models and serves as a potentially safer target for the development of antithrombotics. Herein, we describe the use of the Randomised Nonstandard Peptide Integrated Discovery (RaPID) mRNA display technology to identify a series of potent and selective cyclic peptide inhibitors of FXIIa. Cyclic peptides were evaluated in vitro , and three lead compounds exhibited significant prolongation of aPTT, a reduction in thrombin generation, and an inhibition of bradykinin formation. We also describe our efforts to identify the critical residues for binding FXIIa through alanine scanning, analogue generation, and via in silico methods to predict the binding mode of our lead cyclic peptide inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app