Add like
Add dislike
Add to saved papers

First report of Seimatosporium vitifusiforme causing trunk disease in Chilean grapevines ( Vitis vinifera ).

Plant Disease 2021 January 27
Grapevine is one of the most important fruit crops in Chile and trunk diseases reduce the productivity, quality, and longevity of the vineyards. A survey was conducted in ancient (> 50 years) vineyards of Cauquenes (35°57´14´´S 72°17´07´´W) and Itata valleys (36°38´13´´S 72°30´57´´W), located in the central area of Chile, during 2019. Trunks and cordons showing dieback and dark brown to black wood discoloration were collected from 50 to 200-year-old plants of six cultivars: País, Moscatel, Torontel Amarilla, Carignan, Aliatica and Aligote. The bark was removed and 0.5-cm sections were cut from the edges of necrotic wood lesions. Subsequently, pieces were surface disinfected using 10% v/v sodium hypochlorite bleach (4.9% chlorine), plated on acidified quarter-strength potato dextrose agar (APDA) (25% PDA, acidified with 0.1% v/v 85% lactic acid) and incubated at 25°C, for 14 to 28 days. Hyphal tips were excised and transferred to PDA to obtain pure cultures. Along with the conidiomata and conidia produced, growth rate, color and shape of the colonies on PDA, after 7 and 14 days of incubation at 25°C (n=17), were recorded. DNA was extracted from pure cultures of three isolates on PDA: HMV3, HMV64 and HMV81. The internal transcribed spacer region and partial β-tubulin genes were amplified, using ITS1/ITS4 (White et al. 1990) and bt2A/bt2B (Glass & Donaldson 1995) primers, respectively. Sequences were subjected to NCBI BLAST search and compared to the published sequences. Isolated colonies were whitish to light-brown, cottony with a smooth margin (n=37). Their mycelium grew 1.9 cm after 7-days and 3.2 cm after 14-days of incubation on PDA, at 25°C. Colonies produced black globose pycnidia and curved, slightly-pigmentated, three-septated conidia 22.3-(29.8)-32.2 x 3.9-(4.8)-5.3 µm (n=30), with apical and basal flexuous appendages 4.3-(12.7)-21.5 µm (n=20). When compared to type sequences of Seimatosporium vitifusiforme (Lawrence et al. 2018), ITS and βtub sequences identity of these isolates were 99 to 100% identical. To produce uniform healthy plants for pathogenicity tests, Petit Syrah canes (1-year old) were rooted in tap water amended with 500 ppm of indole-butyric acid, for 30 days. Plants were inoculated with 0.5-cm diameter mycelial plugs of actively growing colonies of the isolates HMV3, HMV64 and HMV81 (GenBank accessions no. MW026664, MW048518; MW026665, MW048519, and MW026666, MW048520, respectively). Sterile agar plugs were used for controls. Five plants per pathogen isolate were incubated at 25°C, in a humid chamber, for 25 days, and seven additional plants per isolate were incubated in aerated tap water, for 55 days. After the incubation period, the bark was removed and the lesions were measured. Dark necrotic lesions identical to the original observations were reproduced, both in the high humidity chamber (6% length) and water (10% length). There were no differences in lesion length among the isolates (P < 0.05). Control vines remained asymptomatic. To fulfill Koch´s postulates, isolations were made from symptomatic vines and compared to the ones used for inoculation, and found to be identical. Seimatosporium vitifusiforme was previously reported as a pathogen of Vitis vinifera in California, USA (Lawrence et al. 2018). Consequently, this is the second report of this fungus as a grapevine pathogen and the first one affecting Latin-American grapevines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app