Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Improved DNA Delivery Efficiency of Bacterial Vectors by Co-Delivery with Exogenous Lipid and Antimicrobial Reagents.

Gene delivery using invasive bacteria as vectors is a robust method that is feasible for plasmid and artificial chromosome DNA construct delivery to human cells presenting β1 integrin receptors. This technique is relatively underutilized owing to the inefficiency of gene transfer to targeted cell populations. Bacterial vectors must successfully adhere to the cell membrane, internalize into the cytoplasm, undergo lysis, and deliver DNA to the nucleus. There are limited studies on the use of exogenous reagents to improve the efficiency of bacteria-mediated gene delivery to mammalian cells. In this chapter, we describe how cationic lipids, conventionally used for DNA and protein transfection, as well as antimicrobial compounds, can be used to synergistically enhance the adherence of invasive bacterial vectors to the cell membrane and improve their predisposition to internalize into the cytoplasm to deliver DNA. Using simple combinatorial methods, functional DNA transfer can be improved by up to four-fold of invaded cell populations. These methods are easy to perform and are likely to be applicable for other bacterial vectors including Listeria and Salmonella.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app