Add like
Add dislike
Add to saved papers

Single-Cell Transcriptomics of Parkinson's Disease Human In Vitro Models Reveals Dopamine Neuron-Specific Stress Responses.

Cell Reports 2020 October 14
The advent of induced pluripotent stem cell (iPSC)-derived neurons has revolutionized Parkinson's disease (PD) research, but single-cell transcriptomic analysis suggests unresolved cellular heterogeneity within these models. Here, we perform the largest single-cell transcriptomic study of human iPSC-derived dopaminergic neurons to elucidate gene expression dynamics in response to cytotoxic and genetic stressors. We identify multiple neuronal subtypes with transcriptionally distinct profiles and differential sensitivity to stress, highlighting cellular heterogeneity in dopamine in vitro models. We validate this disease model by showing robust expression of PD GWAS genes and overlap with postmortem adult substantia nigra neurons. Importantly, stress signatures are ameliorated using felodipine, an FDA-approved drug. Using isogenic SNCA-A53T mutants, we find perturbations in glycolysis, cholesterol metabolism, synaptic signaling, and ubiquitin-proteasomal degradation. Overall, our study reveals cell type-specific perturbations in human dopamine neurons, which will further our understanding of PD and have implications for cell replacement therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app