Add like
Add dislike
Add to saved papers

Enhanced prediction of hemoglobin concentration in a very large cohort of hemodialysis patients by means of deep recurrent neural networks.

Erythropoiesis Stimulating Agents (ESAs) have become a standard anemia management tool for End Stage Renal Disease (ESRD) patients. However, dose optimization constitutes an extremely challenging task due to huge inter and intra-patient variability in the responses to ESA administration. Current data-based approaches to anemia control focus on learning accurate hemoglobin prediction models, which can be later utilized for testing competing treatment choices and choosing the optimal one. These methods, despite being proven effective in practice, present several shortcomings which this paper intends to tackle. Namely, they are limited to a small cohort of patients and, even then, they fail to provide suggestions when some strict requirements are not met (such as having a three month history prior to the prediction). Here, recurrent neural networks (RNNs) are used to model whole patient histories, providing predictions at every time step since the very first day. Furthermore, an unprecedented amount of data (∼110,000 patients from many different medical centers in twelve countries, without exclusion criteria) was used to train it, thus allowing it to generalize for every single patient. The resulting model outperforms state-of-the-art Hemoglobin prediction, providing excellent results even when tested on a prospective dataset. Simultaneously, it allows to bring the benefits of algorithmic anemia control to a very large group of patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app