Add like
Add dislike
Add to saved papers

MoS 2 -Calix[4]arene Catalyzed Synthesis and Molecular Docking Study of 2,4,5-Trisubstituted Imidazoles As Potent Inhibitors of Mycobacterium tuberculosis .

A MoS2-supported-calix[4]arene (MoS2-CA4) nanocatalyst was used for efficient synthesis of 2,4,5-trisubstituted imidazole derivatives from 1-(4-nitrophenyl)-2-(4-(trifluoromethyl)phenyl)ethane-1,2-dione, aldehydes and ammonium acetate under solvent-free conditions. Reusability of the catalyst up to five cycles without any significant loss in the yields of the product is the unique feature of this heterogeneous solid catalysis. Furthermore, the noteworthy highlights of this method are safe reaction profiles, broad substrate scope, excellent yields, economical, solvent-free, and simple workup conditions. All synthesized compounds were evaluated for their in vitro antitubercular (TB) activity against Mycobacterium tuberculosis (Mtb) H37Rv. Among the screened compounds 3c, 3d, 3f, 3m, and 3r had MIC values of 2.15, 2.78, 5.75, 1.36, and 0.75 μM, respectively, and exhibited more potency than the reference drugs pyrazinamide (MIC: 3.12 μM), ciprofloxacin (MIC: 4.73 μM), and ethambutol (7.61 μM). Besides, potent compounds (3c, 3d, 3f, 3m, and 3r) have been tested for inhibition of MabA (β-ketoacyl-ACP reductase) enzyme and cytotoxic activity against mammalian Vero cell line. A molecular docking study was carried out on the MabA (PDB ID: 1UZN) enzyme to predict the interactions of the synthesized compounds. The results of the in vitro anti-TB activity and docking study showed that synthesized compounds have a strong anti-TB activity and can be adapted and produced more effectively as a lead compound.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app