Add like
Add dislike
Add to saved papers

Base-Assisted C-H Bond Cleavage in Cross-Coupling: Recent Insights into Mechanism, Speciation, and Cooperativity.

This review analyzes recent mechanistic studies that have provided new insights into how the structure of a metal complex influences the rate and selectivity of base-assisted C-H cleavage. Partitioning a broader mechanistic continuum into classes delimited by the polarization between catalyst and substrate during C-H cleavage is postulated as a method to identify catalysts favoring electrophilic or nucleophilic reactivity patterns, which may be predictive based on structural features of the metal complex (i.e., oxidation state, d-electron count, charge). Multi-metallic cooperativity and polynuclear speciation also provide new avenues to affect energy barriers for C-H cleavage and site selectivity beyond the limitations of single metal catalysts. An improved understanding of mechanistic nuances and structure-activity relationships on this important bond activation step carries important implications for efficiency and controllable site selectivity in non-directed C-H functionalization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app