Add like
Add dislike
Add to saved papers

Low Nonrelapse Mortality after HLA-Matched Related 2-Step Hematopoietic Stem Cell Transplantation Using Cyclophosphamide for Graft-versus-Host Disease Prophylaxis and the Potential Impact of Non- Cyclophosphamide-Exposed T Cells on Outcomes.

The use of cyclophosphamide (CY) for bidirectional tolerization of recipient and donor T cells is associated with reduced rates of graft-versus-host disease (GVHD) and nonrelapse mortality (NRM) after HLA-matched hematopoietic stem cell transplantation (HSCT). However, recurrent disease remains the primary barrier to long-term survival. We extended our 2-step approach to HLA-matched related HSCT using a radiation-based myeloablative conditioning regimen combined with a high dose of T cells in an attempt to reduce relapse rates while maintaining the beneficial effects of CY tolerization. After conditioning, patients received their grafts in 2 components: (1) a fixed dose of 2 × 108 /kg T cells, followed 2 days later by CY, and (2) a CD34-selected graft containing a small residual amount of non-CY-exposed T cells, at a median dose of 2.98 × 103 /kg. Forty-six patients with hematologic malignancies were treated. Despite the myeloablative conditioning regimen and use of high T cell doses, the cumulative incidences of grade II-IV acute GVHD, chronic GVHD, and NRM at 1 year and 5 years were very low, at 13%, 9%, and 4.3%, respectively. This contributed to a high overall survival of 89.1% at 1 year and 65.8% at 5 years. Relapse was the primary cause of mortality, with a cumulative incidence of 23.9% at 1 year and 45.7% at 5 years. In a post hoc analysis, relapse rates were significantly lower in patients receiving greater than versus those receiving less than the group median of non-CY-exposed residual T cells in the CD34 product (19.3% versus 58.1%; P = .009), without a concomitant increase in NRM. In its current form, this 2-step regimen was highly tolerable, but strategies to reduce relapse, potentially the addition of T cells not exposed to CY, are needed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app