Add like
Add dislike
Add to saved papers

Greenhouse gas budget of a poplar bioenergy plantation in Belgium: CO 2 uptake outweighs CH 4 and N 2 O emissions.

Biomass from short-rotation coppice (SRC) of woody perennials is being increasingly used as a bioenergy source to replace fossil fuels, but accurate assessments of the long-term greenhouse gas (GHG) balance of SRC are lacking. To evaluate its mitigation potential, we monitored the GHG balance of a poplar ( Populus ) SRC in Flanders, Belgium, over 7 years comprising three rotations (i.e., two 2 year rotations and one 3 year rotation). In the beginning-that is, during the establishment year and during each year immediately following coppicing-the SRC plantation was a net source of GHGs. Later on-that is, during each second or third year after coppicing-the site shifted to a net sink. From the sixth year onward, there was a net cumulative GHG uptake reaching -35.8 Mg CO2 eq/ha during the seventh year. Over the three rotations, the total CO2 uptake was -51.2 Mg CO2 /ha, while the emissions of CH4 and N2 O amounted to 8.9 and 6.5 Mg CO2 eq/ha, respectively. As the site was non-fertilized, non-irrigated, and only occasionally flooded, CO2 fluxes dominated the GHG budget. Soil disturbance after land conversion and after coppicing were the main drivers for CO2 losses. One single N2 O pulse shortly after SRC establishment contributed significantly to the N2 O release. The results prove the potential of SRC biomass plantations to reduce GHG emissions and demonstrate that, for the poplar plantation under study, the high CO2 uptake outweighs the emissions of non-CO2 greenhouse gases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app