Add like
Add dislike
Add to saved papers

High-Content Screening for Protein-Protein Interaction Modulators Using Proximity Ligation Assay in Primary Neurons.

The proximity ligation assay (PLA) allows the detection and subcellular localization of protein-protein interactions with high specificity. We recently developed a high-content screening model based on primary hippocampal neurons cultured in 384-well plates and screened a library of ∼1100 compounds using a PLA between tau and bridging integrator 1, a genetic risk factor for Alzheimer's disease. We developed image-segmentation and spot-detection algorithms to delineate PLA signals in the axonal network, but not in cell bodies, from confocal images acquired via a high-throughput microscope. To compare data generated from different plates and through different experiments, we developed a computational routine to optimize the image analysis parameters for each plate and devised a range of quality-control measures to ultimately identify compounds that consistently increase or decrease our read-out. We provide the following protocols. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Routine culture of rat postnatal hippocampal neurons in 384-well plates Basic Protocol 2: Compound incubation using the high-content screening platform Support Protocol 1: Preparation of intermediate plates for compound screening Support Protocol 2: Preparation of intermediate plates for hit validation (dose-response curves) Basic Protocol 3: Proximity ligation assay in 384-well plates Basic Protocol 4: Image acquisition and analysis Support Protocol 3: Optimization of analysis parameters Basic Protocol 5: Identification of hits Basic Protocol 6: Validation of hits based on dose-response curves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app