Add like
Add dislike
Add to saved papers

Notch1 Drives the Formation and Proliferation of Intrahepatic Cholangiocarcinoma.

The molecular mechanisms underlying the development of intrahepatic cholangiocarcinoma (ICC) are not clear yet. In this study, we investigated the involvement of Notch1 in the development of ICC. The cDNA microarray analysis showed that Notch1 expression was higher in ICC tissues than in normal biliary epithelial cells. Stable transfection of Notch1 receptor intracellular domain (NICD1) by hydrodynamic tail vein injection induced ICC formation in mice. Western blotting confirmed that Notch1 signaling was activated in human ICC cell lines and mouse ICC tissues. Silencing Notch1 with specific short interfering RNA (siRNA) inhibited the proliferation of ICC cells. Flow cytometry and Western blotting indicated that apoptosis was induced in Notch1-silenced ICC cells compared with controls. Additionally, Notch1 silencing was associated with the inhibition of hairy and enhancer of split-1 (Hes1) and activation of the phosphatase and tensin homolog (PTEN)/p53 pathway. Taken together, these data suggest that Notch1 drives ICC formation and proliferation; downregulation of Notch1 induces apoptosis in ICC cells; Notch1 signaling may serve as a novel therapeutic target for the treatment of ICC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app