Add like
Add dislike
Add to saved papers

Synthesis of Azulitriphyrins(1.2.1) and Related Benzocarbatriphyrins.

Bis(pyrrolylmethyl)azulene dialdehydes underwent intramolecular McMurry coupling, and following oxidation with DDQ and addition of trifluoroacetic acid, gave aromatic azulitriphyrin cations. The proton NMR spectra for these contracted carbaporphyrinoids showed the internal CH upfield at ca. 2 ppm, while the bridging methine units appeared downfield between 8 and 10 ppm, demonstrating that the macrocycles possess significant 14π electron diamagnetic ring currents. Although protonated azulitriphyrins(1.2.1) proved to be very stable, the free base forms were unstable and could not be isolated. Treatment of an azulitriphyrin with KOt-Bu-t-BuOOH gave rise to oxidative ring contractions that afforded the first examples of benzocarbatriphyrins. These contracted porphyrinoids also exhibit aromatic ring currents and the internal CH resonances shifted upfield to 0.5-0.7 ppm. Protonation afforded cations with slightly enhanced diatropic properties. NICS and AICD calculations confirmed that benzocarbatriphyrins are 14π electron delocalized aromatic systems that bypass the fused arene unit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app