JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Contribution of non-ADH pathways to ethanol oxidation in hepatocytes from fed and hyperthyroid rats. Effect of fructose and xylitol.

The metabolism of (1R)[1-3H]ethanol, [2-3H]lactate or [2-3H]xylitol was studied in hepatocytes from fed or T3-treated rats in the presence or absence of fructose or xylitol. The yields of tritium in ethanol, lactate, water, glycerol and glucose were determined. A simple model, describing the metabolic fate of tritium from these substrates is presented. The model allows estimation of the ethanol oxidation rate by the non-alcohol dehydrogenase pathways from the relative yield of tritium in water and glucose. The calculations are based on a comparison of the fate of the 1-proR-hydrogen of ethanol and the hydrogen bound to carbon 2 of lactate (or xylitol) under identical condition. In our calculations we have taken into account that the reactions catalyzed by lactate dehydrogenase and alcohol dehydrogenase are reversible and that lactate or ethanol labelled during the metabolism of the other tritiated substrates will contribute to the tritium found in water. The contribution of non-ADH pathways to ethanol oxidation varied from 10 to 50% and was correlated to changes in the lactate/pyruvate ratio from 80 to 500. In T3-treated rats the activity of non-ADH pathways were greater than in fed rats for the same lactate/pyruvate ratio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app