Add like
Add dislike
Add to saved papers

Design of experiments for a confirmatory trial of precision medicine.

Precision medicine, aka stratified/personalized medicine, is becoming more pronounced in the medical field due to advancement in computational ability to learn about patient genomic backgrounds. A biomaker, i.e. a type of biological process indicator, is often used in precision medicine to classify patient population into several subgroups. The aim of precision medicine is to tailor treatment regimes for different patient subgroups who suffer from the same disease. A multi-arm design could be conducted to explore the effect of treatment regimes on different biomarker subgroups. However, if treatments work only on certain subgroups, which is often the case, enrolling all patient subgroups in a confirmatory trial would increase the burden of a study. Having observed a phase II trial, we propose a design framework for finding an optimal design that could be implemented in a phase III study or a confirmatory trial. We consider two elements in our approach: Bayesian data analysis of observed data, and design of experiments. The first tool selects subgroups and treatments to be enrolled in the future trial whereas the second tool provides an optimal treatment randomization scheme for each selected/enrolled subgroups. Considering two independent treatments and two independent biomarkers, we illustrate our approach using simulation studies. We demonstrate efficiency gain, i.e. high probability of recommending truly effective treatments in the right subgroup, of the optimal design found by our framework over a randomized controlled trial and a biomarker-treatment linked trial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app