Add like
Add dislike
Add to saved papers

Tough and electro-responsive hydrogel actuators with bidirectional bending behavior.

Nanoscale 2019 January 32
Electro-responsive hydrogel actuators have gained much attention because of their fast response, low power consumption and easy modulation. However, such hydrogel actuators suffer from poor mechanical properties and restricted bending direction, which limit their practical applications. Herein, we report a nanocomposite hydrogel actuator with a combination of high mechanical tensile strength (2 MPa) and automatic bidirectional bending behavior in response to electric signals. The resulting hydrogel, crosslinked by aluminum hydroxide nanoparticles, shows rapid bending behavior and could be cyclically actuated up to ten times in an electric field. Furthermore, the hydrogel demonstrates bidirectional bending actuation, which was ascribed to the difference in diffusion coefficients and concentrations of cations and anions within the gel network. Moreover, the direction and magnitude of the bending behavior could be tuned by composition variation. The hydrogel actuators developed in this study may have great potential in soft robotics, artificial muscles and tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app