Add like
Add dislike
Add to saved papers

Integrated Design and Control of Various Hydrogen Production Flowsheet Configurations via Membrane Based Methane Steam Reforming.

Membranes 2019 January 16
This work focuses on the development and implementation of an integrated process design and control framework for a membrane-based hydrogen production system based on low temperature methane steam reforming. Several alternative flowsheet configurations consisted of either integrated membrane reactor modules or successive reactor and membrane separation modules are designed and assessed by considering economic and controller dynamic performance criteria simultaneously. The design problem is expressed as a non-linear dynamic optimization problem incorporating a nonlinear dynamic model for the process system and a linear model predictive controller aiming to maintain the process targets despite the effect of disturbances. The large dimensionality of the disturbance space is effectively addressed by focusing on disturbances along the direction that causes the maximum process variability revealed by the analysis of local sensitivity information for the process system. Design results from a multi-objective optimization study, where only the annualized equipment and operational costs are minimized, are used as reference case in order to evaluate the proposed design framework. Optimization results demonstrate the controller's ability to track the imposed setpoint changes and alleviate the effects of multiple simultaneous disturbances. Also, significant economic improvements are observed by the implementation of the integrated design and control framework compared to the traditional design methodology, where process and controller design are performed sequentially.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app