Add like
Add dislike
Add to saved papers

Effect of 3-mercaptopyruvate sulfurtransferase deficiency on the development of multiorgan failure, inflammation and wound healing in mice subjected to burn injury.

The gaseous transmitter hydrogen sulfide (H2S) has been implicated in various forms of critical illness. Here we have compared the outcome of scald burn injury in wild-type mice and in mice deficient in 3-mercaptopyruvate sulfurtransferase (3-MST), a mammalian H2S-generating enzyme. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H2S significantly increased in response to burn in wild-type mice, but remained unchanged in 3-MST-/- mice. The capacity of tissue homogenates to produce H2S from 3-mercaptopyruvate was unaffected by burn injury. In 3-MST-/- mice, compared to wild-type controls, there was a significant enhancement of the accumulation of polymorphonuclear cells (as assessed by the quantification of myeloperoxidase) in the liver (but not heart, lung or skin) at 7 days post-burn. Oxidative tissue damage (as assessed by malon dialdehyde content) was comparable between wild-type and 3-MST-deficient mice in all tissues studied. 3-MST-/- and wild-type mice exhibited comparable burn-induced elevations in circulating plasma levels of hepatic injury; however, 3-MST-/- mice exhibited a higher degree of renal injury (as reflected by elevated blood urea nitrogen levels) at 7 days post-burn. Inflammatory mediators (e.g. TNF-, IL-1, IL-2, IL-6, IL-10 and IL-12) increased in burn injury, but without significant differences between the 3-MST-/- and wild-type groups. The healing of the burn wound was also unaffected by 3-MST deficiency. In conclusion, the absence of the H2S-producing enzyme 3-MST slightly exacerbates the development of multiorgan dysfunction but does not affect inflammatory mediator production or wound healing in a murine model of burn injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app