Add like
Add dislike
Add to saved papers

Reducing time to pregnancy and facilitating the birth of healthy children through functional analysis of embryo physiology.

Biology of Reproduction 2019 January 17
An ever-increasing number of couples rely on assisted reproductive technologies (ART) in order to conceive a child. Although advances in embryo culture have led to increases in the success rates of clinical ART, it often takes more than one treatment cycle to conceive a child. Ensuring patients conceive as soon as possible with a healthy embryo is a priority for reproductive medicine. Currently, selection of embryos for transfer relies predominantly on the morphological assessment of the preimplantation embryo, however, morphology is not an absolute link to embryo physiology, nor the health of the resulting child. Non-invasive quantitation of individual embryo physiology, a key regulator of both embryo viability and health, could provide valuable information to assist in the selection of the most viable embryo for transfer, hence reducing the time to pregnancy. Further, according to the Barker Hypothesis, the environment to which a fetus is exposed to during gestation affects subsequent offspring health. If the environment of the preimplantation period is capable of affecting metabolism, which in turn will affect gene expression through the metaboloepigenetic link, then assessment of embryo metabolism should represent an indirect measure of future offspring health. Previously the term viable embryo has been used in association with the potential of an embryo to establish a pregnancy. Here we propose the term healthy embryo to reflect the capacity of that embryo to lead to a healthy child and adult.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app