Add like
Add dislike
Add to saved papers

Magnet Patterned Superparamagnetic Fe 3 O 4 /Au Core-Shell Nanoplasmonic Sensing Array for Label-Free High Throughput Cytokine Immunoassay.

Rapid and accurate immune monitoring plays a decisive role in effectively treating immune-related diseases especially at point-of-care, where an immediate decision on treatment is needed upon precise determination of the patient immune status. Derived from the emerging clinical demands, there is an urgent need for a cytokine immunoassay that offers unprecedented sensor performance with high sensitivity, throughput, and multiplexing capability, as well as short turnaround time at low system complexity, manufacturability, and scalability. In this paper, a label-free, high throughput cytokine immunoassay based on a magnet patterned Fe3 O4 /Au core-shell nanoparticle (FACSNP) sensing array is developed. By exploiting the unique superparamagnetic and plasmonic properties of the core-shell nanomaterials, a facile microarray patterning technique is established that allows the fabrication of a uniform, self-assembled microarray on a large surface area with remarkable tunability and scalability. The sensing performance of the FACSNP microarray is validated by real-time detection of four cytokines in complex biological samples, showing high sensitivity (≈20 pg mL-1 ), selectivity and throughput with excellent statistical accuracy. The developed immunoassay is successfully applied for rapid determination of the functional immunophenotype of leukemia tumor-associated macrophages, manifesting its potential clinical applications for real-time immune monitoring, early cancer detection, and therapeutic drug stratification toward personalized medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app