Add like
Add dislike
Add to saved papers

Fading Mechanisms and Voltage Hysteresis in FeF 2 -NiF 2 Solid Solution Cathodes for Lithium and Lithium-Ion Batteries.

Small 2019 January 16
The rapid development of ultrahigh-capacity alloying or conversion-type anodes in rechargeable lithium (Li)-ion batteries calls for matching cathodes for next-generation energy storage devices. The high volumetric and gravimetric capacities, low cost, and abundance of iron (Fe) make conversion-type iron fluoride (FeF2 and FeF3 )-based cathodes extremely promising candidates for high specific energy cells. Here, the substantial boost in the capacity of FeF2 achieved with the addition of NiF2 is reported. A systematic study of a series of FeF2 -NiF2 solid solution cathodes with precisely controlled morphology and composition reveals that the presence of Ni may undesirably accelerate capacity fading. Using a powerful combination of state-of-the-art analytical techniques in combination with the density functional theory calculations, fundamental mechanisms responsible for such a behavior are uncovered. The unique insights reported in this study highlight the importance of careful selection of metals and electrolytes for optimizing electrochemical properties of metal fluoride cathodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app