Add like
Add dislike
Add to saved papers

Resonant spin wave excitation in magnetoplasmonic bilayers using short laser pulses.

Nanoscale 2019 January 16
In magnetically ordered solids a static magnetic field can be generated by virtue of the transverse magneto-optical Kerr effect (TMOKE). Moreover, the latter was shown to be dramatically enhanced due to the optical excitation of surface plasmons in nanostructures with relatively small optical losses. In this paper we suggest a new method for resonant optical excitation in a prototypical bilayer composed of a noble metal (Au) with grating and a ferromagnetic thin film of yttrium iron garnet (YIG) via a frequency comb. Based on magnetization dynamics simulations we show that for a frequency comb with certain parameters, chosen to be resonant with the spin-wave excitations of YIG, the TMOKE is drastically enhanced, hinting at possible technological applications in optical control of spintronics systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app