Add like
Add dislike
Add to saved papers

On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing.

Optics Letters 2019 January 16
Solution-processed semiconductors that exhibit tunable light absorption and can be directly integrated into state-of-the-art silicon technologies are attractive for near-infrared (NIR) light detection in applications of medical imaging, night vision cameras, hyperspectral sensing, etc. Colloidal quantum dot (CQD) is regarded as a promising candidate for its solution-processability and superior optoelectronic properties. Here we propose an on-chip CQD photodetector, photodiode-oxide-semiconductor field-effect transistor, for NIR light sensing. This CMOS compatible device architecture utilizes silicon as a channel for carrier transport and PbS CQD as the light absorbing material controlling the channel conductivity. While the light with a wavelength longer than about 1100 nm cannot excite a photocurrent in commercial silicon-based photodetectors due to the absorption cutoff of silicon, the proposed photodetector can have responses owing to the usage of a PbS CQD photodiode. Simulations showed that the photodiode could provide photovoltage to the semiconductor, forming an inversion layer at the oxide-semiconductor interface, and the electron density at the interface is significantly enhanced. As a result, currents could flow through this layer with ease between the source and drain electrodes. For a proof-of-concept demonstration, we experimentally connected a CQD photodiode with a commercial silicon transistor and proved that the current from the transistor could be increased by photovoltage provided by the photodiode under NIR light illumination. The device shows a responsivity of 5.9A/W at the wavelength of 1250 nm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app