Add like
Add dislike
Add to saved papers

Inter- and intraspecific competition and shade avoidance in the carnivorous pale pitcher plant in a nutrient-poor savanna.

PREMISE OF THE STUDY: Ecologists generally agree that weak interspecific competition for light contributes to high plant species diversity in ecosystems with nutrient-poor soils. However, the role of competition for light in such ecosystems that are also maintained by fire is poorly understood. I quantified intra- and interspecific competition for light in a fire-maintained nutrient-poor pine savanna by contrasting the effects of conspecific and heterospecific neighbors of the pale pitcher plant, Sarracenia alata.

METHODS: Accounting for initial neighbor abundance/aboveground production and initial transplant size, I measured growth and survival of small and large pitcher plant ramets of Sarracenia alata transplanted to the vicinity of natural, undisturbed mixtures of large pitcher plants and their heterospecific neighbors in the field. I tested competition for light and nutrients by clipping conspecific neighbors and by excluding prey from unclipped neighbors of transplants. I tested interspecific competition by uprooting heterospecific neighbors.

KEY RESULTS: Plant survivorship increased when conspecific neighbors were clipped and/or starved but not when heterospecific neighbors were uprooted. Small pitcher plants benefited from clipping large conspecific neighbors, suggesting that competition for light was important. Large pitcher plants benefited from excluding prey from their neighbors, with no additional benefit of clipping, suggesting that competition for prey limited their survival. Transplants produced new pitchers that were taller with narrower openings (i.e., shade avoidance) when heterospecific neighbors were left intact but not when conspecifics were unclipped.

CONCLUSIONS: Results demonstrate size-dependent intraspecific competition for light and nutrients and interspecific shade avoidance in Sarracenia alata, which could be important to understanding species coexistence in fire-maintained nutrient-poor ecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app