Add like
Add dislike
Add to saved papers

Various Multicharged Anions of Ginsenosides in Negative Electrospray Ionization with QTOF High-Resolution Mass Spectrometry.

When characterizing components from ginseng, we found a vast number of multicharged anions presented in the liquid chromatography-mass spectrometry (LC-MS) chromatograms. The source of these anions is unclear yet, while ginsenosides, the major components of ginseng, are the main suspected type of molecules because of their sugar moiety. Our investigation using 14 pure ginsenosides affirmed that the multicharged anions were formed by ginsenosides rather than other types of ingredients in ginseng. Various anions could be observed for each ginsenoside. These anions contain ions ([M-2H]2- , [M+Adduct]2- ), as well as those formed by polymerization of at least two ginsenosides, such as [nM-2H]2- , [nM-H+Adduct]2- , and [nM-3H]3- . The presence of so different types of ions from a ginsenoside explains the reason for the large number of anions in the LC-MS analysis of ginseng. We further found that formation of [nM-2H]2- ions was influenced by the number of sugar chains: ginsenosides containing two sugar chains produced all [nM-2H]2- ion types, whereas ginsenosides containing one sugar chain did not produce [2M-2H]2- . Thus, [2M-2H]2- and [3M-2H]2- can be utilized to rapidly identify monodesmosidic and/or bidesmosidic ginsenosides as joint diagnostic anions. The position of the glycosyl radical might be the key factor affecting the formation of multicharged multimer ions from monodesmosidic ginsenosides. Consequently, three groups of ginsenoside isomers were differentiated by characteristic [nM-2H]2- anions. Using concentration-dependent characteristics and collision-induced dissociation (CID), we confirmed that [nM-2H]2- ions are non-covalently bound multimers whose aggregation has marked distinction between monodesmosidic and bidesmosidic ginsenosides, accounting for the differentiated formation of [nM-2H]2- between them. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app