Add like
Add dislike
Add to saved papers

Association equilibria of divalent ions on the surface of liposomes formed from phosphatidylcholine.

Divalent ions, in particular calcium ions, constitute important macroelements in living organisms. They are also found in cell membranes, i.e., ensuring their stabilization or participating in synaptic transmission of nerve impulses. The aim of this work is to describe the interactions of divalent ions, such as Ca2+ , Ba2+ , and Sr2+ , in electrolytes with the functional groups on the surface of liposomes formed from phosphatidylcholine (PC). Microelectrophoresis is used to determine the surface charge density as a function of pH. The interactions between ions found in solution and the functional groups of PC are described with the use of a seven-equilibrium mathematical model. Using this model along with experimental data on the charge density of the membrane surface, the association constants characterizing this equilibrium are determined. These parameters are used to calculate the theoretical model curves. The validity of the proposed model is confirmed by comparing the theoretically calculated changes in charge density on the liposome surface with the experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app