Add like
Add dislike
Add to saved papers

Determining phoretic mobilities with Onsager's reciprocal relations: Electro- and thermophoresis revisited.

We use a hydrodynamic reciprocal approach to phoretic motion to derive general expressions for the electrophoretic and thermophoretic mobility of weakly charged colloids in aqueous electrolyte solutions. Our approach shows that phoretic motion can be understood in terms of the interfacial transport of thermodynamic excess quantities that arises when a colloid is kept stationary inside a bulk fluid flow. The obtained expressions for the mobilities are extensions of previously known results as they can account for different hydrodynamic boundary conditions at the colloidal surface, irrespective of how the colloid-fluid interaction range compares to the colloidal radius.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app