Add like
Add dislike
Add to saved papers

Addressing the isomer cataloguing problem for nanopores in two-dimensional materials.

Nature Materials 2019 January 15
The presence of extended defects or nanopores in two-dimensional (2D) materials can change the electronic, magnetic and barrier membrane properties of the materials. However, the large number of possible lattice isomers of nanopores makes their quantitative study a seemingly intractable problem, confounding the interpretation of experimental and simulated data. Here we formulate a solution to this isomer cataloguing problem (ICP), combining electronic-structure calculations, kinetic Monte Carlo simulations, and chemical graph theory, to generate a catalogue of unique, most-probable isomers of 2D lattice nanopores. The results demonstrate remarkable agreement with precise nanopore shapes observed experimentally in graphene and show that the thermodynamic stability of a nanopore is distinct from its kinetic stability. Triangular nanopores prevalent in hexagonal boron nitride are also predicted, extending this approach to other 2D lattices. The proposed method should accelerate the application of nanoporous 2D materials by establishing specific links between experiment and theory/simulations, and by providing a much-needed connection between molecular design and fabrication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app