Add like
Add dislike
Add to saved papers

Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model.

Biomaterials 2019 January 11
The efficacy of cell-based therapies as an alternative to autologous bone grafts requires biomaterials to localize cells at the defect and drive osteogenic differentiation. Hydrogels are ideal cell delivery vehicles that can provide instructional cues via their composition or mechanical properties but commonly lack osteoconductive components that nucleate mineral. To address this challenge, we entrapped mesenchymal stromal cells (MSCs) in a composite hydrogel based on two naturally-derived polymers (alginate and hyaluronate) containing biomineralized polymeric microspheres. Mechanical properties of the hydrogels were dependent upon composition. The presentation of the adhesive tripeptide Arginine-Glycine-Aspartic Acid (RGD) from both polymers induced greater osteogenic differentiation of ovine MSCs in vitro compared to gels formed of RGD-alginate or RGD-alginate/hyaluronate alone. We then evaluated the capacity of this construct to stimulate bone healing when transplanting autologous, culture-expanded MSCs into a surgical induced, critical-sized ovine iliac crest bone defect. At 12 weeks post-implantation, defects treated with MSCs transplanted in composite gels exhibited significant increases in blood vessel density, osteoid formation, and bone formation compared to acellular gels or untreated defects. These findings demonstrate the capacity of osteoconductive hydrogels to promote bone formation with autologous MSCs in a large animal bone defect model and provide a promising vehicle for cell-based therapies of bone healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app