Add like
Add dislike
Add to saved papers

Highly methylated Xist in SCNT embryos was retained in deceased cloned female goats.

X (inactive)-specific transcript (Xist) is crucial in murine cloned embryo development, but its role in cloned goats remains unknown. Therefore, in this study we examined the expression and methylation status of Xist in somatic cell nuclear transfer (SCNT) embryos, as well as in ear, lung, and brain tissue of deceased cloned goats. First, the Xist sequence was amplified and a differentially methylated region was identified in oocytes and spermatozoa. Xist methylation levels were greater in SCNT- than intracytoplasmic sperm injection-generated female 8-cell embryos. In addition, compared with naturally bred controls, Xist methylation levels were significantly increased in the ear, lung, and brain tissue of 3-day-old female deceased cloned goats, but were unchanged in the ear tissue of female live cloned goats and in the lung and brain of male deceased cloned goats. Xist expression was significantly increased in the ear tissue of female live cloned goats, but decreased in the lung and brain of female deceased cloned goats. In conclusion, hypermethylation of Xist may have resulted from incomplete reprogramming and may be retained in 3-day-old female deceased cloned goats, subsequently leading to dysregulation of Xist.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app