Add like
Add dislike
Add to saved papers

Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions.

A high quality activated carbon was developed from biological sludge of a beverage wastewater treatment plant (BWTP). The material was characterized and its adsorption potential to remove Allura Red AC and Crystal Violet dyes from aqueous media was verified. The ACBS (activated carbon from beverage sludge) revealed mesoporous features, presenting average pore diameter of 6.32 nm, pore volume of 0.5098 cm3  g-1 and surface area of 631.8 m2  g-1 . Adsorption was adequate using 0.25 g L -1 of ACBS, and, the process was favored at pH 2.0 for Allura Red AC and pH 8.0 for Crystal Violet. From the kinetic viewpoint, the data were satisfactorily represented by the pseudo-second order model. Freundlich and Sips models were suitable to represent the adsorption equilibrium of the Allura Red and Crystal Violet, respectively. The maximum values for adsorption capacities were 287.1 mg g-1 for Allura Red and 640.7 mg g-1 for Crystal Violet. The adsorption of both dyes was thermodynamically spontaneous, favorable and endothermic. In brief, the residual sludge of a wastewater treatment plant may be used as an eco-friendly precursor for ACBS production. ACBS was an efficient adsorbent material able to uptake dyes from aqueous solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app