Add like
Add dislike
Add to saved papers

Effects of four years of elevated ozone on microbial biomass and extracellular enzyme activities in a semi-natural grassland.

Reduced belowground carbon (C) allocation by plants exposed to ozone may change properties and activities of the microbial community in soils. To investigate how soil microbial biomass and extracellular enzyme activities respond to elevated ozone, we collected soils from a temperate grassland after four years of ozone exposure under fully open-air field conditions. We measured soil microbial biomass, the metabolism of low molecular weight C substrates and hydrolytic extracellular enzyme activities in both bulk soil and isolated aggregates to assess changes in microbial activity and community function. After four years of elevated ozone treatment, soil total organic C was reduced by an average of 20% compared with ambient condition. Elevated ozone resulted in a small but insignificant reduction (4-10%) in microbial biomass in both bulk soil and isolated aggregates. Activities of extracellular enzymes were generally not affected by elevated ozone, except β-glucosidase, whose activity in bulk soil was significantly lower under elevated ozone than ambient condition. Activities of β-glucosidase, leucine aminopeptidase and acid phosphatase were higher in microaggregates (<0.25 mm) as compared to macroaggregates (>0.25 mm). Elevated ozone had no effects on mineralization rates of low molecular weight C substrates in both bulk soil and isolated aggregates. We therefore conclude that the size and activity rather than function of the soil microbial community in this semi-natural grassland are altered by elevated ozone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app