Add like
Add dislike
Add to saved papers

Genome-wide identification and expression analysis of HKT transcription factor under salt stress in nine plant species.

High-affinity K+ (HKT) gene family is regulated the transport of Na+ and maintain the balance between Na+ and K+ in the process of plant growth, development and response to abiotic stress. Despite this fact, systemic and comprehensive studies on HKT in multiply plants remains unknown. A total of 29 HKT genes distributed on nine species were identified. Phylogenetic tree analysis results indicated that HKT genes were divided into five homology subfamilies. Combining structural analysis with protein contains five highly conservative motifs, HKT family has similar gene structures and special gene characteristics. Finally, the expression patterns of HKT showed two different dramatic changes in different organs and tissues under different salt stress in multiply plants. This study has many implications for research into the comparative genomics analysis of HTK gene family, which revealed regulation mechanism of HKT genes, is valuable for understanding development and response to abiotic stress in plant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app