Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Patient Adipose Stem Cell-Derived Adipocytes Reveal Genetic Variation that Predicts Antidiabetic Drug Response.

Cell Stem Cell 2019 Februrary 8
Thiazolidinedione drugs (TZDs) target the transcriptional activity of peroxisome proliferator activated receptor γ (PPARγ) to reverse insulin resistance in type 2 diabetes, but side effects limit their clinical use. Here, using human adipose stem cell-derived adipocytes, we demonstrate that SNPs were enriched at sites of patient-specific PPARγ binding, which correlated with the individual-specific effects of the TZD rosiglitazone (rosi) on gene expression. Rosi induction of ABCA1, which regulates cholesterol metabolism, was dependent upon SNP rs4743771, which modulated PPARγ binding by influencing the genomic occupancy of its cooperating factor, NFIA. Conversion of rs4743771 from the inactive SNP allele to the active one by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated editing rescued PPARγ binding and rosi induction of ABCA1 expression. Moreover, rs4743771 is a major determinant of undesired serum cholesterol increases in rosi-treated diabetics. These data highlight human genetic variation that impacts PPARγ genomic occupancy and patient responses to antidiabetic drugs, with implications for developing personalized therapies for metabolic disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app