Add like
Add dislike
Add to saved papers

Chemically reprogramming the phospho-transfer reaction to crosslink protein kinases to their substrates.

Protein Science 2019 January 14
The proteomic mapping of enzyme-substrate interactions is challenged by their transient nature. A method to capture interacting protein kinases in complexes with a single substrate of interest would provide a new tool for mapping kinase signaling networks. Here we describe a nucleotide based substrate analog capable of reprogramming the wild-type phosphoryl-transfer reaction to produce a kinase-acrylamide based thioether crosslink to mutant substrates with a cysteine nucleophile substituted at the native phosphorylation site. A previously reported ATP-based methacrylate crosslinker (ATP-MA) was capable of mediating kinase crosslinking to short peptides but not protein substrates. Exploration of structural variants of ATP-MA to enable crosslinking of protein substrates to kinases led to the discovery that an ADP-based methacrylate (ADP-MA) crosslinker was superior to the ATP scaffold at crosslinking in vitro. The improved efficiency of ADP-MA over ATP-MA is due to reduced inhibition of the second step of the kinase-substrate crosslinking reaction by the product of the first step of the reaction. The new probe, ADP-MA, demonstrated enhanced in vitro crosslinking between the Src tyrosine kinase and its substrate Cortactin in a phosphorylation site specific manner. The kinase-substrate crosslinking reaction can be carried out in a complex mammalian cell lysate setting, although the low abundance of endogenous kinases remains a significant challenge for efficient capture. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app