Add like
Add dislike
Add to saved papers

Synthetic developmental regulator MciZ targets FtsZ across Bacillus species and inhibits bacterial division.

Molecular Microbiology 2019 January 13
Cell division in most bacteria is directed by FtsZ, a conserved tubulin-like GTPase that assembles forming the cytokinetic Z-ring and constitutes a target for the discovery of new antibiotics. The developmental regulator MciZ, a 40-amino acid peptide endogenously produced during Bacillus subtilis sporulation, halts cytokinesis in the mother cell by inhibiting FtsZ. The crystal structure of a FtsZ:MciZ complex revealed that bound MciZ extends the C-terminal beta-sheet of FtsZ blocking its assembly interface. Here we demonstrate that exogenously added MciZ specifically inhibits B. subtilis cell division, sporulation and germination, and provide insight into MciZ molecular recognition by FtsZ from different bacteria. MciZ and FtsZ form a complex with sub-micromolar affinity, analyzed by analytical ultracentrifugation, laser biolayer interferometry and isothermal titration calorimetry. Synthetic MciZ analogs, carrying single amino acid substitutions impairing MciZ beta-strand formation or hydrogen bonding to FtsZ, show a gradual reduction in affinity that resembles their impaired activity in bacteria. Gene sequences encoding MciZ spread across genus Bacillus and synthetic MciZ slows down cell division in Bacillus species including pathogenic B. cereus and B. anthracis. Moreover, B. subtilis MciZ is recognized by the homologous FtsZ from Staphylococcus aureus and inhibits division when it is expressed into S. aureus cells. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app