Add like
Add dislike
Add to saved papers

Effect of nintedanib on airway inflammation in a mouse model of acute asthma.

Journal of Asthma 2019 January 12
OBJECTIVE: New treatments are needed for cases of asthma that are refractory to traditional therapies. In this study, we examined the effect of oral nintedanib, an intracellular inhibitor of tyrosine kinases, on airway hyper-responsiveness (AHR) and airway smooth muscle cells, using a mouse model of experimental asthma.

METHODS: Asthma was experimentally induced in mice via subcutaneous injection of ovalbumin (OVA). A group of saline-injected mice served as a control group. The OVA mice were then divided into four treatment groups according to the dose of nintedanib. AHR was examined via exposure to vaporized methacholine. Airway inflammation was assessed via bronchoalveolar lavage fluid (BALF) cell counts and Th2 cytokine concentrations.

RESULTS: Baseline levels of AHR and airway inflammation were higher in OVA mice than in the control group. Treatment with nintedanib lowered AHR, BALF cell counts and BALF cytokine levels in a dose-dependent fashion. The effect of nintedanib was comparable to that of dexamethasone. In particular, treatment with nintedanib lowered the expression of transforming growth factor-β1 and inhibited the expression and phosphorylation of platelet-derived growth factor receptor-β, vascular endothelial growth factor receptor 1 (VEGFR1), VEGFR2, fibroblast growth factor receptor 2 (FGFR2), FGFR3, and extracellular signal-regulated kinase.

CONCLUSIONS: Nintedanib lowered AHR and the expression of factors associated with airway inflammation and remodeling in a mouse model of experimental asthma. Our results suggest that nintedanib may be useful in the treatment of asthma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app