JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Effects of time-of-day on inhibition of lens-induced myopia by quinpirole, pirenzepine and atropine in chicks.

Injections of the D2 dopamine receptor agonist quinpirole or the acetylcholine muscarinic receptor antagonists pirenzepine and atropine prevent the development of negative-lens-induced myopia in chicks by inhibiting ocular growth. Because ocular growth is diurnally rhythmic, we hypothesized that the efficacy for inhibition may depend on time of day. Chicks wore monocular -10D lenses for 5 days, starting at 12d of age. The light cycle was 12L/12D. The lens-wearing eye received daily intravitreal injections for 4 days, of 20 μl quinpirole (10 nmol), at the following times: 7:30 EST (lights-on; morning; n = 12), 12:00 (mid-day; n = 13), or 19:30 (evening; n = 17). The same protocol was used for pirenzepine (0.2 μmol) and atropine (18 nmol), at the following times: 8:30 EDT (lights-on; n = 10; n = 18), 14:00 (n = 10; n = 12), or 20:30 (n = 18; n = 16). Saline injections were done in separate groups of birds for all groups as controls, and the data combined (n = 28). Ocular dimensions were measured using A-scan ultrasonography on treatment day 1 at 12:00, and again on day 5 at 12:00; growth rate is defined as the change in axial length over 96 h. For quinpirole and pirenzepine, subsets (n's in Methods) of mid-day and evening groups were measured at 6 h intervals on day 5 (from 12:00 to 12:00) to obtain rhythm parameters for axial length and choroidal thickness; for atropine, only the mid-day group was measured. Refractions were measured on day 5 with a Hartinger's refractometer. For quinpirole and pirenzepine, mid-day injections were more effective at inhibiting ocular growth than evening (Exp-fellow: quinpirole: -68 vs 118 μm/96h; post-hoc Bonferroni p = 0.016; pirenzepine: 79 vs 215 μm/96h; p = 0.046). There were no between-group statistically significant differences for atropine. For quinpirole, the mid-day amplitude of the axial rhythm was smaller than for evening (95 vs 142 μm; p < 0.05), but there were no time-dependent effects on the rhythms for pirenzepine. For atropine, the amplitude of the axial-length rhythm was significantly larger than that for pirenzepine at mid-day. We conclude that there is a phase-dependent efficacy for quinpirole and pirenzepine, with mid-day injections being most effective. There were no consistent time-dependent alterations in rhythm parameters for any of the drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app