Add like
Add dislike
Add to saved papers

Razor hamstring curl and Nordic hamstring exercise architectural adaptations: Impact of exercise selection and intensity.

OBJECTIVES: To investigate knee flexor strength and biceps femoris long head (BFlh) architectural adaptations following two different Nordic hamstring exercise (NHE) interventions and one razor hamstring curl (RHC) intervention.

METHODS: Thirty recreationally active males performed a total of 128 reps of NHEbodyweight (n = 10), NHEweighted (n = 10), or RHCweighted training (n = 10) across 6 weeks. Following the intervention, participants avoided any eccentric training for 4 weeks (detraining period). Strength results during the NHE and RHC were recorded pre- and post-intervention, as well as following detraining. Architectural characteristics of the BFlh were assessed weekly throughout the intervention and detraining periods.

RESULTS: For the NHEweighted group, NHE strength increased (+81N, P = 0.044, d = 0.90) and BFlh fascicles lengthened (+1.57 cm, P < 0.001, d = 1.41) after 6 weeks of training. After 1 week of detraining, BFlh fascicle lengths shortened, with the largest reductions seen in the NHEweighted group (-0.96 cm, P = 0.021, d = -0.90). Comparatively, BFlh fascicle length and NHE strength responses were moderate in the NHEbodyweight group and negligible in the RHCweighted group. The greatest RHC strength changes (+82N, P = 0.038, d = 1.15) were seen in the RHCweighted group.

CONCLUSIONS: NHEweighted interventions induce large BFlh fascicle lengthening responses and these adaptations decay after just 1 week of detraining. NHEbodyweight training has a moderate impact on BFlh architecture while the RHCweighted group has the least. Weighted NHE and RHC training promoted exercise-specific increases in strength. These findings suggest that exercise selection and intensity should be considered when prescribing exercises aiming to increase eccentric strength and BFlh fascicle length.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app