Add like
Add dislike
Add to saved papers

Robust Graph Learning From Noisy Data.

Learning graphs from data automatically have shown encouraging performance on clustering and semisupervised learning tasks. However, real data are often corrupted, which may cause the learned graph to be inexact or unreliable. In this paper, we propose a novel robust graph learning scheme to learn reliable graphs from the real-world noisy data by adaptively removing noise and errors in the raw data. We show that our proposed model can also be viewed as a robust version of manifold regularized robust principle component analysis (RPCA), where the quality of the graph plays a critical role. The proposed model is able to boost the performance of data clustering, semisupervised classification, and data recovery significantly, primarily due to two key factors: 1) enhanced low-rank recovery by exploiting the graph smoothness assumption and 2) improved graph construction by exploiting clean data recovered by RPCA. Thus, it boosts the clustering, semisupervised classification, and data recovery performance overall. Extensive experiments on image/document clustering, object recognition, image shadow removal, and video background subtraction reveal that our model outperforms the previous state-of-the-art methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app