Add like
Add dislike
Add to saved papers

Gibbs/MCMC Sampling for Multiple RNA Interaction with Sub-optimal Solutions.

Multiple RNA interaction can be modeled as a problem in combinatorial optimization, where the "optimal" structure is driven by an energy-minimization-like algorithm. However, the actual structure may not be optimal in this computational sense. Moreover, it is not necessarily unique. Therefore, alternative sub-optimal solutions are needed to cover the biological ground. We present a combinatorial formulation for the Multiple RNA Interaction problem with approximation algorithms to handle various interaction patterns, which when combined with Gibbs sampling and MCMC (Markov Chain Monte Carlo), can efficiently generate a reasonable number of optimal and sub-optimal solutions. When viable structures are far from an optimal solution, exploring dependence among different parts of the interaction can increase their score and boost their candidacy for the sampling algorithm. By clustering the solutions, we identify few representatives that are distinct enough to suggest possible alternative structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app