Add like
Add dislike
Add to saved papers

Support vector machine-based multivariate pattern classification of methamphetamine dependence using arterial spin labeling.

Addiction Biology 2019 January 10
Arterial spin labeling (ASL) magnetic resonance imaging has been widely applied to identify cerebral blood flow (CBF) abnormalities in a number of brain disorders. To evaluate its significance in detecting methamphetamine (MA) dependence, this study used a multivariate pattern classification algorithm, ie, a support vector machine (SVM), to construct classifiers for discriminating MA-dependent subjects from normal controls. Forty-five MA-dependent subjects, 45 normal controls, and 36 heroin-dependent subjects were enrolled. Classifiers trained with ASL-CBF data from the left or right cerebrum showed significant hemispheric asymmetry in their cross-validated prediction performance (P < 0.001 for accuracy, sensitivity, specificity, kappa, and area under the curve [AUC] of the receiver operating characteristics [ROC] curve). A classifier trained with ASL-CBF data from all cerebral regions (bilateral hemispheres and corpus callosum) was able to differentiate MA-dependent subjects from normal controls with a cross-validated prediction accuracy, sensitivity, specificity, kappa, and AUC of 89%, 94%, 84%, 0.78, and 0.95, respectively. The discrimination map extracted from this classifier covered multiple brain circuits that either constitute a network related to drug abuse and addiction or could be impaired in MA-dependence. The cerebral regions contribute most to classification include occipital lobe, insular cortex, postcentral gyrus, corpus callosum, and inferior frontal cortex. This classifier was also specific to MA-dependence rather than substance use disorders in general (ie, 55.56% accuracy for heroin dependence). These results support the future utilization of ASL with an SVM-based classifier for the diagnosis of MA-dependence and could help improve the understanding of MA-related neuropathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app