Add like
Add dislike
Add to saved papers

Palmitate enhanced the cytotoxicity of ZnO nanomaterials possibly by promoting endoplasmic reticulum stress.

We recently synthesized ZnO nanomaterials (denoted as ZnO nanorods [NRs] and Mini-NRs) and suggested that their cytotoxicity could be related with the activation of endoplasmic reticulum (ER) stress apoptosis. However, in a complex biological microenvironment, the ER stress-apoptosis pathway could also be modulated by biological molecules, such as free fatty acids, leading to unpredicted biological effects. In this study, we investigated the combined toxicity of ZnO NRs/Mini-NRs and palmitate (PA) to THP-1 macrophages. PA influenced the zeta potential and solubility of ZnO NRs and ZnO Mini-NRs in water, which indicated a change of colloidal stability. Exposure to ZnO NRs and Mini-NRs dose-dependent decreased cellular viability and release of soluble monocyte chemotactic protein 1 (sMCP-1), and these effects were significantly promoted with the presence of PA. However, ZnO NR- and Mini-NR-induced intracellular Zn ions or reactive oxygen species were not significantly affected by PA. ZnO NRs and ZnO Mini-NRs significantly promoted the expression of ER stress genes HSPA5, DDIT3, XBP-1s and apoptotic gene CASP3, whereas PA also modestly promoted the expression of HSPA5, DDIT3 and CASP3. Interestingly, the ER stress inducer thapsigargin showed a similar effect as PA to promote the cytotoxicity of ZnO NRs and ZnO Mini-NRs. It is suggested that PA might promote the cytotoxicity of ZnO NRs and ZnO Mini-NRs possibly by promoting ER stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app