Add like
Add dislike
Add to saved papers

Anomalous interfacial stress generation during sodium intercalation/extraction in MoS 2 thin-film anodes.

Science Advances 2019 January
Although the generation of mechanical stress in the anode material is suggested as a possible reason for electrode degradation and fading of storage capacity in batteries, only limited knowledge of the electrode stress and its evolution is available at present. Here, we show real-time monitoring of the interfacial stress of a few-layer MoS2 system under the sodiation/desodiation process using microcantilever electrodes. During the first sodiation with a voltage plateau of 1.0 to 0.85 V, the MoS2 exhibits a compressive stress (2.1 Nm-1 ), which is substantially smaller than that measured (9.8 Nm-1 ) during subsequent plateaus at 0.85 to 0.4 V due to the differential volume expansion of the MoS2 film. The conversion reaction to Mo below 0.1 V generates an anomalous compressive stress of 43 Nm-1 with detrimental effects. These results also suggest the existence of a separate discharge stage between 0.6 and 0.1 V, where the generated stress is only approximately one-third of that observed below 0.1 V. This approach can be adapted to help resolve the localized stress in a wide range of electrode materials, to gain additional insights into mechanical effects of charge storage, and for long-lifetime battery design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app