Add like
Add dislike
Add to saved papers

Mechanistic Pathways of ATP Sensitive Potassium Channels Referring to Cardio-Protective Effects and Cellular Functions.

Drug Research 2019 January 5
A study of potassium channels correlates the fundamentals of mechanistic pathways and various physiological functions. The knowledge of these pathways provides the background, how to determine unit cell functions and to affect cardio protection. ATP sensitive potassium channels adjust excitability of membrane and functions as per metabolic status of cell. A lot of energy consumption primarily occurred in skeletal muscles which also express high number of potassium channels. The increase in calcium release and high heat production is occurred due to loss of potassium channels. Such type of mediations determines metabolic changes and energy required in the dissipation. IPC reduces infarct size in anesthetized mice. In ischemic-reperfusion, pressure in left ventricle was watched while contractile power recovery did not happen. It was seen that elements of intact potassium channel are fundamental for Ischemic preconditioning (IPC). If more prominent is enactment of potassium channels and their cardiologic effects create high heart rate. All the more as of late, it has been suggested that mitochondrial ATP sensitive potassium channels are critical as closing stage effectors which trigger IPC as opposed to sarcolemmal potassium channels. Nevertheless, the importance of the potassium channels reconsidered in cardio-protection in present findings. These discoveries recommend that potassium channels in the adjusting ischemic-reperfusion damage in mice. The heart rate of the mouse occurred during ischemia; enhance watchful extrapolation applied to larger warm blooded animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app