Add like
Add dislike
Add to saved papers

Stereocomplex Micelle Loaded with Paclitaxel for Enhanced Therapy of Breast Cancer in an Orthotopic Mouse Model.

Micelles are promising a nano drug carrier for cancer therapy. However, their application is often limited due to the instability of them in vivo. Herein, we reported the development of stereocomplex micelle (SCM) based on amphiphilic dextran-block-polylactide (Dex-b-PLA) that could improve the stability of micelles, reduce the early release of loaded drugs and target the breast cancer through the enhanced permeability and retention (EPR) effect for enhanced breast cancer therapy. The SCM were fabricated from the equimolar mixture of the enantiomeric Dex-b-PLA copolymers. Paclitaxel (PTX) as a model anti breast cancer drug was loaded in the SCM, noted as SCM/PTX. Transmission electron microscopy (TEM) and dynamic laser scattering (DLS) showed the diameter of SCM/PTX was below100 nm, which was suitable sizes for the EPR effect. The release kinetics of SCM/PTX exhibited that the release of PTX was obviously slow down and showed constant release. In the in vitro antitumor test, the SCM/PTX could effectively suppress the viability of 4T1 cells, which was demonstrated by the MTT assay. Moreover, the SCM/PTX could reduce the distribution of PTX at normal organs and obviously increase the accumulation of PTX at tumor sites. The circulation time of SCM/PTX was also obviously enhanced compared to free PTX. In the in vivo antitumor test, the SCM/PTX effectively inhibited the progression of 4T1 breast cancer in the orthotopic mouse model, as demonstrated by decreased tumor growth and increased apoptosis and necrosis areas within tumor tissues. In addition, the toxic side effects of PTX was also alleviated in the SCM/PTX group. This study introduced a stable micelle system that passive targeted the tumor for enhanced breast cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app