Add like
Add dislike
Add to saved papers

Viscoelastic properties of human periodontal ligament: Effects of the loading frequency and location.

Angle Orthodontist 2019 January 3
OBJECTIVES:: To determine the viscoelastic properties of the human periodontal ligament (PDL) using dynamic mechanical analysis (DMA).

MATERIALS AND METHODS:: This study was carried out on three human maxillary jaw segments containing six upper central incisors and four lateral incisors. DMA was used to investigate the mechanical response of the human PDL. Dynamic sinusoidal loading was carried out with an amplitude of 3 N and frequencies between 0.5 Hz and 10 Hz. All samples were grouped by tooth positions and longitudinal locations.

RESULTS:: An increase of oscillation frequency resulted in marked changes in the storage and loss moduli of the PDL. The storage modulus ranged from 0.808 MPa to 7.274 MPa, and the loss modulus varied from 0.087 MPa to 0.891 MPa. The tan δ, representing the ratio between viscosity and elasticity, remained constant with frequency. The trends for storage and loss moduli were described by exponential fits. The dynamic moduli of the central incisor were higher than those of the lateral incisor. The PDL samples from the gingival third of the root showed lower storage and loss moduli than those from the middle third of the root.

CONCLUSIONS:: Human PDL is viscoelastic through the range of frequencies tested: 0.5-10 Hz. The viscoelastic relationship changed with respect to frequency, tooth position, and root level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app