Add like
Add dislike
Add to saved papers

H-reflex modulation preceding changes in soleus EMG activity during balance perturbation.

When balance is compromised, postural strategies are induced to quickly recover from the perturbation. However, neuronal mechanisms underlying these strategies are not fully understood. Here, we assessed the amplitude of the soleus (SOL) H-reflex during forward and backward tilts of the support surface during standing (n = 15 healthy participants). Electrical stimulation of the tibial nerve was applied randomly before platform tilt (control) and 0, 25, 50, 75, 100 or 200 ms after tilt onset. During backward tilt, a significant decrease in H-reflex amplitude was observed at 75, 100 and 200 ms. The onset of the decreased H-reflex amplitude significantly preceded the onset of the SOL EMG decrease (latency: 144 ± 16 ms). During forward tilt, the amplitude of the H-reflex increased at 100 and 200 ms after tilt onset. The onset of H-reflex increase did not occur significantly earlier than the onset of the SOL EMG increase (127 ± 5 ms). An important inter-subject variability was observed for the onset of H-reflex modulation with respect to EMG response for each direction of tilt, but this variability could not be explained by the subject's height. Taken together, the results establish the time course of change in SOL H-reflex excitability and its relation to the increase and decrease in SOL EMG activity during forward and backward tilts. The data presented here also suggest that balance mechanisms may differ between forward and backward tilts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app