Add like
Add dislike
Add to saved papers

Prediction of DNA-binding residues in local segments of protein sequences with Fuzzy Cognitive Maps.

While protein-DNA interactions are crucial for a wide range of cellular functions, only a small fraction of these interactions was annotated to date. One solution to close this annotation gap is to employ computational methods that accurately predict protein-DNA interactions from widely available protein sequences. We present and empirically test first-of-its-kind predictor of DNA-binding residues in local segments of protein sequences that relies on the Fuzzy Cognitive Map (FCM) model. The FCM model uses information about putative solvent accessibility, evolutionary conservation and relative propensities of amino acid to interact with DNA to generate putative DNA-binding residues. Empirical tests on a benchmark dataset reveal that the FCM model secures AUC = 0.72 and outperforms recently released hybridNAP predictor and several popular machine learning methods including Support Vector Machines, Nave Bayes and k-Nearest Neighbor. The improvements in the predictive performance result from an intrinsic feature of FCMs that incorporate relations between the input features, besides the relations between the inputs and output that are modelled by other algorithms. We also empirically demonstrate that use of a short sliding window results in further improvements in the predictive quality. The funDNApred webserver that implements the FCM predictor is available at https://biomine.cs.vcu.edu/servers/funDNApred/.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app