Add like
Add dislike
Add to saved papers

Cometabolic degradation of bisphenol A by pure culture of Ralstonia eutropha and metabolic pathway analysis.

Bisphenol A (BPA) is a toxic compound emitting to the environment mainly by polycarbonate production facilities. In this research, BPA with the initial concentrations in the range of 1-40 mg l-1 was degraded by Ralstonia eutropha. The bacteria were unable to use BPA as the sole carbon source. Therefore, resting and growing cells of phenol-adapted R. eutropha were used for cometabolic biodegradation of BPA with phenol at the concentration of 100 mg l-1 . The optimum initial concentrations of BPA were 20 mg l-1 in both approaches of cometabolism. By using resting cells, BPA removal efficiency (RE) reached to 57%, however, RE decreased to 37% by growing cells in the presence of phenol. BPA-degrading activity was inhibited at BPA concentrations >20 mg l-1 . Liquid chromatography-mass spectrometry technique was used to identify some metabolic intermediates generated during BPA degradation process as 1,2-bis(4-hydroxyphenyl)-2-propanol, 4-(2-propanol)-phenol, 4-hydroxyacetophenone, 4-isopropenylphenol, and 4-hydroxybenzoic acid. Finally, metabolic pathways for BPA degradation were proposed in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app